Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Defect and phase stability of solid solutions of Mg2X with an antifluorite structure: An ab initio study

Identifieur interne : 001E67 ( Main/Repository ); précédent : 001E66; suivant : 001E68

Defect and phase stability of solid solutions of Mg2X with an antifluorite structure: An ab initio study

Auteurs : RBID : Pascal:12-0435930

Descripteurs français

English descriptors

Abstract

First principles calculations are done for Mg2X (X=Si, Ge or Sn) antifluorite compounds and their solid solutions in order to investigate their pseudo-binary phase diagram. The formation energies of the end-member compounds agree qualitatively with the experiments. For X=Si and Ge, there is a complete solubility, but we observe a miscibility gap in the pseudo-binary phase diagram Mg2Si-Mg2Sn. This agrees with the most recent experiments and phase diagram assessments. Calculated electronic properties of Mg2Si1-xSnx alloys qualitatively agree with experiments and in particular the energy bandgap decreases when Si is substituted by Sn. Supercell calculations are also done in order to determine the most stable defects and the doping induced by these defects in the three end-member compounds. We find that the intrinsic n-doping in pure Mg2Si can be attributed to the presence of magnesium atoms in interstitial positions. In Mg2Ge and Mg2Sn, since other defects are stable, they can be also of p-type.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0435930

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Defect and phase stability of solid solutions of Mg
<sub>2</sub>
X with an antifluorite structure: An ab initio study</title>
<author>
<name sortKey="Viennois, Romain" uniqKey="Viennois R">Romain Viennois</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Institut de Chimie Moléculaire et des Matériaux I.C.G., UMR-CNRS 5253, Université Montpellier II, Place E. Bataillon</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
<orgName type="university">Université Montpellier 2</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jund, Philippe" uniqKey="Jund P">Philippe Jund</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Institut de Chimie Moléculaire et des Matériaux I.C.G., UMR-CNRS 5253, Université Montpellier II, Place E. Bataillon</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
<orgName type="university">Université Montpellier 2</orgName>
</affiliation>
</author>
<author>
<name sortKey="Colinet, Catherine" uniqKey="Colinet C">Catherine Colinet</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Science et Ingénierie des Matériaux et Procédés, Grenoble INP, UJF, CNRS</s1>
<s2>38402 Saint Martin d'Hères</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Saint Martin d'Hères</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tedenac, Jean Claude" uniqKey="Tedenac J">Jean-Claude Tedenac</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Institut de Chimie Moléculaire et des Matériaux I.C.G., UMR-CNRS 5253, Université Montpellier II, Place E. Bataillon</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
<orgName type="university">Université Montpellier 2</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0435930</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0435930 INIST</idno>
<idno type="RBID">Pascal:12-0435930</idno>
<idno type="wicri:Area/Main/Corpus">001591</idno>
<idno type="wicri:Area/Main/Repository">001E67</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-4596</idno>
<title level="j" type="abbreviated">J. solid state chem. : (Print)</title>
<title level="j" type="main">Journal of solid state chemistry : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ab initio calculations</term>
<term>Antifluorite structure</term>
<term>Defects</term>
<term>Density functional method</term>
<term>Doping</term>
<term>Electronic properties</term>
<term>Electronic structure</term>
<term>Energy gap</term>
<term>Germanium</term>
<term>Heat of formation</term>
<term>Indium additions</term>
<term>Interstitial impurities</term>
<term>Magnesium</term>
<term>Magnesium silicide</term>
<term>Miscibility gap</term>
<term>Nitrogen additions</term>
<term>Phase diagrams</term>
<term>Phase stability</term>
<term>Silicon</term>
<term>Solid solutions</term>
<term>Solubility</term>
<term>Thermodynamic properties</term>
<term>Thermoelectric materials</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Défaut</term>
<term>Stabilité phase</term>
<term>Propriété thermodynamique</term>
<term>Solution solide</term>
<term>Calcul ab initio</term>
<term>Méthode fonctionnelle densité</term>
<term>Diagramme phase</term>
<term>Chaleur formation</term>
<term>Solubilité</term>
<term>Lacune miscibilité</term>
<term>Bande interdite</term>
<term>Propriété électronique</term>
<term>Structure électronique</term>
<term>Dopage</term>
<term>Structure antifluorite</term>
<term>Silicium</term>
<term>Germanium</term>
<term>Siliciure de magnésium</term>
<term>Matériau thermoélectrique</term>
<term>Addition azote</term>
<term>Addition indium</term>
<term>Magnésium</term>
<term>Impureté interstitielle</term>
<term>Si</term>
<term>Mg2Si</term>
<term>Mg2Sn</term>
<term>Mg2Si1-xSnx</term>
<term>Mg</term>
<term>7115M</term>
<term>8130B</term>
<term>6540G</term>
<term>6475</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Magnésium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">First principles calculations are done for Mg
<sub>2</sub>
X (X=Si, Ge or Sn) antifluorite compounds and their solid solutions in order to investigate their pseudo-binary phase diagram. The formation energies of the end-member compounds agree qualitatively with the experiments. For X=Si and Ge, there is a complete solubility, but we observe a miscibility gap in the pseudo-binary phase diagram Mg
<sub>2</sub>
Si-Mg
<sub>2</sub>
Sn. This agrees with the most recent experiments and phase diagram assessments. Calculated electronic properties of Mg
<sub>2</sub>
Si
<sub>1-x</sub>
Sn
<sub>x</sub>
alloys qualitatively agree with experiments and in particular the energy bandgap decreases when Si is substituted by Sn. Supercell calculations are also done in order to determine the most stable defects and the doping induced by these defects in the three end-member compounds. We find that the intrinsic n-doping in pure Mg
<sub>2</sub>
Si can be attributed to the presence of magnesium atoms in interstitial positions. In Mg
<sub>2</sub>
Ge and Mg
<sub>2</sub>
Sn, since other defects are stable, they can be also of p-type.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-4596</s0>
</fA01>
<fA02 i1="01">
<s0>JSSCBI</s0>
</fA02>
<fA03 i2="1">
<s0>J. solid state chem. : (Print)</s0>
</fA03>
<fA05>
<s2>193</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Defect and phase stability of solid solutions of Mg
<sub>2</sub>
X with an antifluorite structure: An ab initio study</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Solid State Chemistry and Materials Science of Thermoelectric Materials</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>VIENNOIS (Romain)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JUND (Philippe)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>COLINET (Catherine)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TEDENAC (Jean-Claude)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>KANATZIDIS (Mercouri)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>PARASKEVOPOULOS (Konstantinos M.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institut de Chimie Moléculaire et des Matériaux I.C.G., UMR-CNRS 5253, Université Montpellier II, Place E. Bataillon</s1>
<s2>34095 Montpellier</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Science et Ingénierie des Matériaux et Procédés, Grenoble INP, UJF, CNRS</s1>
<s2>38402 Saint Martin d'Hères</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Department of Chemistry, Northwestern University, 2145 Sheridan Road</s1>
<s2>Evanston, IL 60208-3113</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Physics Department, Solid State Physics Section, Aristotle University of Thessloniki</s1>
<s2>Thessaloniki 54124</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>133-136</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14677</s2>
<s5>354000508387140230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0435930</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of solid state chemistry : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>First principles calculations are done for Mg
<sub>2</sub>
X (X=Si, Ge or Sn) antifluorite compounds and their solid solutions in order to investigate their pseudo-binary phase diagram. The formation energies of the end-member compounds agree qualitatively with the experiments. For X=Si and Ge, there is a complete solubility, but we observe a miscibility gap in the pseudo-binary phase diagram Mg
<sub>2</sub>
Si-Mg
<sub>2</sub>
Sn. This agrees with the most recent experiments and phase diagram assessments. Calculated electronic properties of Mg
<sub>2</sub>
Si
<sub>1-x</sub>
Sn
<sub>x</sub>
alloys qualitatively agree with experiments and in particular the energy bandgap decreases when Si is substituted by Sn. Supercell calculations are also done in order to determine the most stable defects and the doping induced by these defects in the three end-member compounds. We find that the intrinsic n-doping in pure Mg
<sub>2</sub>
Si can be attributed to the presence of magnesium atoms in interstitial positions. In Mg
<sub>2</sub>
Ge and Mg
<sub>2</sub>
Sn, since other defects are stable, they can be also of p-type.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70A15</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A30B</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60E40G</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60D75</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Défaut</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Defects</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Stabilité phase</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Phase stability</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Propriété thermodynamique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Thermodynamic properties</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Solution solide</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Solid solutions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Calcul ab initio</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Ab initio calculations</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Diagramme phase</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Phase diagrams</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Chaleur formation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Heat of formation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Solubilité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Solubility</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Lacune miscibilité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Miscibility gap</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Doping</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Doping</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Structure antifluorite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Antifluorite structure</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Estructura antifluorita</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Siliciure de magnésium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Magnesium silicide</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Magnesio siliciuro</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Matériau thermoélectrique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Thermoelectric materials</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Addition azote</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Nitrogen additions</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Magnésium</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Magnesium</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Impureté interstitielle</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Interstitial impurities</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Impureza intersticial</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Mg2Si</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Mg2Sn</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Mg2Si1-xSnx</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Mg</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>7115M</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>8130B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>6540G</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>6475</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>338</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E67 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001E67 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0435930
   |texte=   Defect and phase stability of solid solutions of Mg2X with an antifluorite structure: An ab initio study
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024